Search results for "image classification"

showing 10 items of 114 documents

Image classification based on 2D feature motifs

2013

The classification of raw data often involves the problem of selecting the appropriate set of features to represent the input data. In general, various features can be extracted from the input dataset, but only some of them are actually relevant for the classification process. Since relevant features are often unknown in real-world problems, many candidate features are usually introduced. This degrades both the speed and the predictive accuracy of the classifier due to the presence of redundancy in the candidate feature set. In this paper, we study the capability of a special class of motifs previously introduced in the literature, i.e. 2D irredundant motifs, when they are exploited as feat…

pattern discoveryContextual image classificationProbabilistic latent semantic analysisExploitComputer sciencebusiness.industryScale-invariant feature transformPattern recognitioncomputer.software_genreDigital imageComputingMethodologies_PATTERNRECOGNITIONclassificationimage analysisVisual WordArtificial intelligenceData miningbusinessClassifier (UML)computerImage compression
researchProduct

Support vector machines in engineering: an overview

2014

This paper provides an overview of the support vector machine SVM methodology and its applicability to real-world engineering problems. Specifically, the aim of this study is to review the current state of the SVM technique, and to show some of its latest successful results in real-world problems present in different engineering fields. The paper starts by reviewing the main basic concepts of SVMs and kernel methods. Kernel theory, SVMs, support vector regression SVR, and SVM in signal processing and hybridization of SVMs with meta-heuristics are fully described in the first part of this paper. The adoption of SVMs in engineering is nowadays a fact. As we illustrate in this paper, SVMs can …

Computer Science::Machine LearningBeamformingData processingSignal processingGeneral Computer ScienceContextual image classificationComputer sciencebusiness.industryMachine learningcomputer.software_genreSupport vector machineComputingMethodologies_PATTERNRECOGNITIONKernel methodState (computer science)Artificial intelligenceData miningbusinesscomputerDecoding methodsWiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
researchProduct

Novel VAMPIRE algorithms for quantitative analysis of the retinal vasculature

2013

This paper summarizes three recent, novel algorithms developed within VAMPIRE, namely optic disc and macula detection, arteryvein classification, and enhancement of binary vessel masks, and their performance assessment. VAMPIRE is an international collaboration growing a suite of software tools to allow efficient quantification of morphological properties of the retinal vasculature in large collections of fundus camera images. VAMPIRE measurements are currently mostly used in biomarker research, i.e., investigating associations between the morphology of the retinal vasculature and a number of clinical and cognitive conditions.

retinaRetinaSettore INF/01 - InformaticaContextual image classificationbusiness.industryComputer scienceVampireRetinalImage segmentationClassificationFeature detectionRetina; Feature detection; Segmentation; Classification; Biomarkerschemistry.chemical_compoundSegmentationmedicine.anatomical_structurechemistrymedicineSegmentationComputer visionArtificial intelligencebusinessAlgorithmBiomarkersOptic discFeature detection (computer vision)2013 ISSNIP Biosignals and Biorobotics Conference: Biosignals and Robotics for Better and Safer Living (BRC)
researchProduct

Multi-Temporal Image Classification with Kernels

2009

Contextual image classificationStructured support vector machinebusiness.industryLinear classifierPattern recognitionArtificial intelligenceQuadratic classifierbusinessMachine learningcomputer.software_genrecomputerMathematics
researchProduct

Classification based on Iterative Object Symmetry Transform

2004

The paper shows an application of a new operator named the iterated object transform (IOT) for cell classification. The IOT has the ability to grasp the internal structure of a digital object and this feature can be usefully applied to discriminate structured images. This is the case of cells representing chondrocytes in bone tissue, giarda protozoan, and myeloid leukaemia. A tree classifier allows us to discriminate the three classes with a good accuracy.

Contextual image classificationSettore INF/01 - Informaticabusiness.industryIterative methodFeature extractionGRASPCognitive neuroscience of visual object recognitionPattern recognitionIterated functionComputer visionArtificial intelligencebusinessClassifier (UML)Classification Medical imaging clusteringMathematicsDigital object
researchProduct

Deep CNN-ELM Hybrid Models for Fire Detection in Images

2018

In this paper, we propose a hybrid model consisting of a Deep Convolutional feature extractor followed by a fast and accurate classifier, the Extreme Learning Machine, for the purpose of fire detection in images. The reason behind using such a model is that Deep CNNs used for image classification take a very long time to train. Even with pre-trained models, the fully connected layers need to be trained with backpropagation, which can be very slow. In contrast, we propose to employ the Extreme Learning Machine (ELM) as the final classifier trained on pre-trained Deep CNN feature extractor. We apply this hybrid model on the problem of fire detection in images. We use state of the art Deep CNN…

Contextual image classificationArtificial neural networkComputer sciencebusiness.industryPattern recognition02 engineering and technologyConvolutional neural networkBackpropagationSupport vector machine03 medical and health sciences0302 clinical medicineSoftmax function0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligencebusinessClassifier (UML)030217 neurology & neurosurgeryExtreme learning machine
researchProduct

SAR Image Classification Combining Structural and Statistical Methods

2011

The main objective of this paper is to develop a new technique of SAR image classification. This technique combines structural parameters, including the Sill, the slope, the fractal dimension and the range, with statistical methods in a supervised image classification. Thanks to the range parameter, we define the suitable size of the image window used in the proposed approach of supervised image classification. This approach is based on a new way of characterising different classes identified on the image. The first step consists in determining relevant area of interest. The second step consists in characterising each area identified, by a matrix. The last step consists in automating the pr…

010504 meteorology & atmospheric sciencesContextual image classificationbusiness.industryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONProcess (computing)Pattern recognition02 engineering and technology01 natural sciencesFractal dimensionImage (mathematics)Range (mathematics)Matrix (mathematics)Fractal[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV][INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV][ INFO.INFO-TI ] Computer Science [cs]/Image Processing0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligenceVariogrambusinessComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciencesMathematics
researchProduct

Hyperspectral detection of citrus damage with Mahalanobis kernel classifier

2007

Presented is a full computer vision system for the identification of post-harvest damage in citrus packing houses. The method is based on the combined use of hyperspectral images and the Mahalanobis kernel classifier. More accurate and reliable results compared to other methods are obtained in several scenarios and acquired images.

Mahalanobis distanceContextual image classificationbusiness.industryComputer scienceHyperspectral imagingPattern recognitionObject detectionSupport vector machineKernel (linear algebra)Kernel methodKernel (image processing)Computer visionArtificial intelligenceElectrical and Electronic EngineeringbusinessClassifier (UML)
researchProduct

A Comparative Analysis of Residual Block Alternatives for End-to-End Audio Classification

2020

Residual learning is known for being a learning framework that facilitates the training of very deep neural networks. Residual blocks or units are made up of a set of stacked layers, where the inputs are added back to their outputs with the aim of creating identity mappings. In practice, such identity mappings are accomplished by means of the so-called skip or shortcut connections. However, multiple implementation alternatives arise with respect to where such skip connections are applied within the set of stacked layers making up a residual block. While residual networks for image classification using convolutional neural networks (CNNs) have been widely discussed in the literature, their a…

Normalization (statistics)General Computer ScienceComputer scienceFeature extractionESC02 engineering and technologycomputer.software_genreResidualConvolutional neural networkconvolutional neural networks0202 electrical engineering electronic engineering information engineeringGeneral Materials Scienceurbansound8kAudio signal processingBlock (data storage)Contextual image classificationGeneral EngineeringAudio classification020206 networking & telecommunications113 Computer and information sciences020201 artificial intelligence & image processinglcsh:Electrical engineering. Electronics. Nuclear engineeringData mininglcsh:TK1-9971computerresidual learningIEEE Access
researchProduct

Putting the user into the active learning loop : Towards realistic but efficient photointerpretation

2012

In recent years, several studies have been published about the smart definition of training set using active learning algorithms. However, none of these works consider the contradiction between the active learning methods, which rank the pixels according to their uncertainty, and the confidence of the user in labeling, which is related both to the homogeneity of the pixel context and to the knowledge of the user of the scene. In this paper, we propose a two-steps procedure based on a filtering scheme to learn the confidence of the user in labeling. This way, candidate training pixels are ranked according both to their uncertainty and to the chances of being labeled correctly by the user. In…

Training setContextual image classificationComputer sciencebusiness.industryActive learning (machine learning)Machine learningcomputer.software_genreActive learningLife ScienceArtificial intelligenceData miningbusinesscomputer
researchProduct